

SAMXON BRAND ALUMINUM ELECTROLYTIC CAPACITORS **PRODUCT SPECIFICATION**

規格書

CUSTOMER :

(客戶):志盛翔

DATE: (日期):2020-1-13

CATEGORT (曲名) DESCRIPTION (型号) : VERSION (版本) : Customer P/N :	ALUMINUM ELECTROLYTIC CAPACITORS RT 450V120μF(φ18X35) 01
SUPPLIER :	

SUPPLI	ER	CUS	ГOMER
PREPARED (拟定)	CHECKED (审核)	APPROVAL (批准)	SIGNATURE (签名)
赵安平	刘渭清		

ELECTROLYTIC CAPACITOR SPECIFICATION RT SERIES

	\$	SPECIFIC. RT SEF				ALTERNATION HISTORY RECORDS				
Rev.	Date	Mark		age	Contents	Purpose	Drafter	Approver		
				0						
	Version		01				Page 1			
	, 0101011		~ 1				1 490 1			

	MAN YUE ELECTRO COMPANY LIMIT				ELECTR CAPA SPECIFI RT SE	CITOR CATION			XON	ON			
Tabl	H +	ions an	d Char	acteristics							τ	J nit: mn	n
	93° +2	Ho		正极	负极		P	Shape Coo	le —	D L	 	18 35	7
		请特别 型极性 向!!		/	F∜ →			РС Туре	,	F H±0.5 H1±0.5 H0±0.5		7.5 4.0 3.0 13.6	
									: α=1.5; L≥ : β =0.5; Φ		1.0	0.8	
		WV	Cap.	Cap.	Temp. range(°C)	tan δ (120Hz,	Leakage Current	Max Ripple Current at 105°C 100KHz	Load lifetime		nension (mm)		Sleeve
No.	SAMXON Part No.	(Vdc)	(µF)	tolerance	Talige(C)	20°C)	(µA,2min)	(mA rms)	(Hrs)	D×L	F	фd	

Version 01	Page 2
------------	--------

Application 4 Part Number System 4 Construction 5 Characteristics 5~10 Rated voltage & Surge voltage Capacitance (Tolerance) Leakage current tanð Temperature characteristic To adl lífe test Shelf lífe test Shelf lífe test Shelf lífe test Shelf lífe test Shelf lífe test Change of temperature 14 Damp heat test 15 Vent test 16 Maximum permissible (ripple current) List of "Environment-related Substances to be Controlled ('Controlled Substances')" 11	C O N T E N T S	Sheet
Construction5Characteristics5~10Rated voltage & Surge voltage5~10Rated voltage & Surge voltage5~10Capacitance (Tolerance)1Leakage current4tanō5Terminal strength6Temperature characteristic7Load life test8Shelf life test9 Surge test1010 Vibration11Solderability test12Resistance to solder heat13Change of temperature14 Damp heat test15 Vent test16 Maximum permissible (ripple current)11List of "Environment-related Substances to be Controlled ('Controlled List of "Environment-related Substances to be Controlled List of "Environment-related Substances to be Controlled ('Controlled List of "Environment-related Substances to be Controlled List of "Environment-related Substances to be Controlled List of "Environm	Application	4
5~10 1 Rated voltage & Surge voltage 2 Capacitance (Tolerance) 3 Leakage current 4 tanõ 5 Terminal strength 6 Temperature characteristic 7 Load life test 8 Shelf life test 9 Surge test 10 Vibration 11 Solderability test 12 Resistance to solder heat 13 Change of temperature 14 Damp heat test 15 Vent test 16 Maximum permissible (ripple current) List of "Environment-related Substances to be Controlled ('Controlled 11	Part Number System	4
5~10 1 Rated voltage & Surge voltage 2 Capacitance (Tolerance) 3 Leakage current 4 tanδ 5 Terminal strength 6 Temperature characteristic 7 Load life test 8 Shelf life test 9 Surge test 10 Vibration 11 Solderability test 12 Resistance to solder heat 13 Change of temperature 14 Damp heat test 15 Vent test 16 Maximum permissible (ripple current) List of "Environment-related Substances to be Controlled ('Controlled Substances')"	Construction	5
 Rated voltage & Surge voltage Capacitance (Tolerance) Leakage current tanδ Terminal strength Temperature characteristic Load life test Shelf life test Surge test Vibration Solderability test Resistance to solder heat Change of temperature Damp heat test Vent test Kention Kenti	Characteristics	5~10
 3 Leakage current 4 tanδ 5 Terminal strength 6 Temperature characteristic 7 Load life test 8 Shelf life test 9 Surge test .10 Vibration .11 Solderability test .12 Resistance to solder heat .13 Change of temperature .14 Damp heat test .15 Vent test .16 Maximum permissible (ripple current) List of "Environment-related Substances to be Controlled ('Controlled Substances')" 	Rated voltage & Surge voltage	5 10
 4 tanδ 5 Terminal strength 6 Temperature characteristic 7 Load life test .8 Shelf life test .9 Surge test .10 Vibration .11 Solderability test .12 Resistance to solder heat .13 Change of temperature .14 Damp heat test .15 Vent test .16 Maximum permissible (ripple current) List of "Environment-related Substances to be Controlled ('Controlled Substances')" 	2 Capacitance (Tolerance)	
 5 Terminal strength 6 Temperature characteristic 7 Load life test 8 Shelf life test 9 Surge test .10 Vibration .11 Solderability test .12 Resistance to solder heat .13 Change of temperature .14 Damp heat test .15 Vent test .16 Maximum permissible (ripple current) List of "Environment-related Substances to be Controlled ('Controlled 11 	3 Leakage current	
 6 Temperature characteristic 7 Load life test 8 Shelf life test 9 Surge test .10 Vibration .11 Solderability test .12 Resistance to solder heat .13 Change of temperature .14 Damp heat test .15 Vent test .16 Maximum permissible (ripple current) List of "Environment-related Substances to be Controlled ('Controlled Substances')" 	4 tanδ	
 7 Load life test 8 Shelf life test 9 Surge test .10 Vibration .11 Solderability test .12 Resistance to solder heat .13 Change of temperature .14 Damp heat test .15 Vent test .16 Maximum permissible (ripple current) List of "Environment-related Substances to be Controlled ('Controlled 11 	5 Terminal strength	
 .8 Shelf life test .9 Surge test .10 Vibration .11 Solderability test .12 Resistance to solder heat .13 Change of temperature .14 Damp heat test .15 Vent test .16 Maximum permissible (ripple current) List of "Environment-related Substances to be Controlled ('Controlled 11 	6 Temperature characteristic	
 .9 Surge test .10 Vibration .11 Solderability test .12 Resistance to solder heat .13 Change of temperature .14 Damp heat test .15 Vent test .16 Maximum permissible (ripple current) List of "Environment-related Substances to be Controlled ('Controlled Substances')" 	7 Load life test	
 .10 Vibration .11 Solderability test .12 Resistance to solder heat .13 Change of temperature .14 Damp heat test .15 Vent test .16 Maximum permissible (ripple current) List of "Environment-related Substances to be Controlled ('Controlled 11 	.8 Shelf life test	
 .11 Solderability test .12 Resistance to solder heat .13 Change of temperature .14 Damp heat test .15 Vent test .16 Maximum permissible (ripple current) List of "Environment-related Substances to be Controlled ('Controlled Substances')" 	.9 Surge test	
.12 Resistance to solder heat .13 Change of temperature .14 Damp heat test .15 Vent test .16 Maximum permissible (ripple current) List of "Environment-related Substances to be Controlled ('Controlled Substances')"	.10 Vibration	
 .13 Change of temperature .14 Damp heat test .15 Vent test .16 Maximum permissible (ripple current) List of "Environment-related Substances to be Controlled ('Controlled 11 Substances')" 	.11 Solderability test	
.14 Damp heat test .15 Vent test .16 Maximum permissible (ripple current) List of "Environment-related Substances to be Controlled ('Controlled Substances')"	.12 Resistance to solder heat	
.15 Vent test .16 Maximum permissible (ripple current) List of "Environment-related Substances to be Controlled ('Controlled Substances')"	.13 Change of temperature	
16 Maximum permissible (ripple current) List of "Environment-related Substances to be Controlled ('Controlled Substances')"	.14 Damp heat test	
List of "Environment-related Substances to be Controlled ('Controlled 11 Substances')"	15 Vent test	
Substances')"		
Attachment: Application Guidelines 12~15		11
	Attachment: Application Guidelines	12~15
	Attachment: Application Guidelines	12~15

Version	01		Page	3
---------	----	--	------	---

ELECTROLYTIC CAPACITOR SPECIFICATION RT SERIES

1. Application

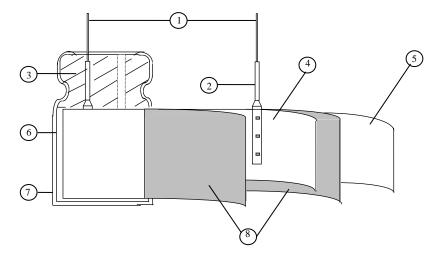
This specification applies to polar Aluminum electrolytic capacitor (foil type) used in electronic equipment. Designed capacitor's quality meets IEC60384.

2. Part Number System 123 456 7 89 101112 1314 1516 17 Ρ EGS 1 0 5 м 1 H **D**1 1 TC S А SAMXON SLEEVE PRODUCT LINE MATERIAL VOLTAGE SERIES CAPACITANCE CASE SIZE TOI TYPE Feature Code Cap(MFD) Code Tolerance (%) Code Voltage (W.V.) Code Case Size SAMXON Product Lin ries ESM EKF ESS EKS 0D (d) Co 3 B 3.5 1 4 C 5 D 6.3 E For internal use only RR Radial bulk 0.1 104 ±5 J 2.5 0E (The product lines 0G 4 we have H.A.B.C.D. Ammo Taping 0.22 224 EGS 6.3 OJ EGS EKM EKG EOM EZS EGF ESF ±10 к E,M or 0,1,2,3,4,5,9) 8 0K 2.0mm Pitch τт 0.33 334 10 1A L 13 13.5 13.5 14 4.5 c 12 ±15 12.5 1B J V τυ 2.5mm Pitch 0.47 474 16 1C м +20 20 1D 3.5mm Pitch тν ESF EGT EGK EGE EGD EGC 105 Sleeve Material 1 Code 16.5 16.5 25 1E Р PET 5.0mm Pitch тс 30 11 2.2 225 Ν ±30 18.5 32 13 ERS ERF ERL ERR 35 1V Lead Cut & Form 3.3 335 -40 w ⋚ 40 1G 25 30 34 35 40 СВ-Туре СВ 42 1M 4.7 475 -20 0 ERT ERE ERD ERH EBD А 50 1H СЕ-Туре CE 10 106 57 1L -20 +10 63 **1**J С <u>42</u> 45 HE HE-Type 22 226 71 15 40 51 63.5 76 80 90 100 ERA ERB ERC EFA -20 +40 75 1**T** х KD-Type KD 33 336 80 1K 85 1R -20 +50 FD-Type FD S 476 ENH ERW ERY ELP EAP 47 90 19 Caste 45 54 57 77 72 112 118 12 18 12 25 20 20 30 34 35 35 100 2A 4.5 -10 EH-Type EH в 100 107 120 20 5.4 125 2B PCB Termial $\begin{array}{r} 7\\ \hline 7.7\\ \hline 10.2\\ \hline 11\\ \hline 11.5\\ \hline 12\\ \hline 2.5\\ \hline 13\\ \hline \\ 13\\ \hline \end{array}$ -10 +20 227 220 EQP EDP v 150 2Z 160 2C sw ETP EHP EUP 337 330 -10 +30 180 2P Q 2D 200 Snap-in sx EKP EEP EFP ESP EVP 470 477 -10 +50 215 22 т 220 2N 13.5 sz 2200 228 -5 +10 230 23 20 25 29.5 Е 250 2E Lug SG 22000 229 275 2Т 30 31.5 35 35.5 -5 +15 F 300 21 05 35.5 50 80 100 105 110 120 30 40 33000 339 310 2R -5 +20 G 50 80 1L 1M 1N 1P 06 2F 315 EWS EWH EWL EWB VSS 47000 479 2U 330 0 +20 R 350 Т5 2V 10T 100000 Screw 2X 0 +30 360 0 т6 VNS 375 2Q 150000 15T VKS VKM VRL VNH 10 1R 1E 2Y 40 50 385 +50 Т D5 400 2G 220000 22T 15 1F 1T +5 +15 z 420 2M D6 450 2W VRF 330000 33T +5 D 500 2H 550 25 1000000 10M +10+50 Y 600 26 630 2J 1500000 15M +10 +30 н 2200000 22M 3300000 33M 5

Version

01

Page


4

ELECTROLYTIC CAPACITOR SPECIFICATION RT SERIES

SAMXON

3. Construction

Single ended type to be produced to fix the terminals to anode and cathode foil, and wind together with paper, and then wound element to be impregnated with electrolyte will be enclosed in an aluminum case. Finally sealed up tightly with end seal rubber, then finished by putting on the vinyl sleeve.

No	Component	Material
1	Lead line	Tinned CP wire (Pb Free)
2	Terminal	Aluminum wire
3	Sealing Material	Rubber
4	Al-Foil (+)	Formed aluminum foil
5	Al-Foil (-)	Etched aluminum foil or formed aluminum foil
6	Case	Aluminum case
7	Sleeve	PET
8	Separator	Electrolyte paper

4. Characteristics

Standard atmospheric conditions

Unless otherwise specified, the standard range of atmospheric conditions for making measurements and tests are as follows:

Ambient temperature	:15°C to 35°C
Relative humidity	: 45% to 85%
Air Pressure	: 86kPa to 106kPa

If there is any doubt about the results, measurement shall be made within the following conditions:

Ambient temperature	$: 20^{\circ}C \pm 2^{\circ}C$
Relative humidity	: 60% to 70%
Air Pressure	: 86kPa to 106kPa

Operating temperature range

The ambient temperature range at which the capacitor can be operated continuously at rated voltage See table 1 temperature range.

As to the detailed information, please refer to table 2.

Varian	01		5
version	01		3
V CI SIOII	01		5

ELECTROLYTIC CAPACITOR SPECIFICATION RT SERIES

	ITEM	PERFORMANCE									
	Rated voltage (WV)										
4.1		WV (V.DC)	160	200	220	250	350	400	420	450	500
	Surge voltage (SV)	SV (V.DC)	200	250	270	300	400	450	470	500	550
4.2	Nominal capacitance (Tolerance)	Measuring F Measuring V Measuring T <criteria></criteria>	<condition>Measuring Frequency: 120Hz\pm12HzMeasuring Voltage: Not more than 0.5VrmsMeasuring Temperature: $20\pm 2^{\circ}C$<criteria>Shall be within the specified capacitance tolerance.</criteria></condition>								
4.3	Leakage current	<condition> Connecting t minutes, and <criteria> Refer to Tabl</criteria></condition>	the cap		-			tor (1)	$k\Omega \pm 10$	0Ω) in	series for
4.4	tanδ	See 4.2, Nor < Criteria >	<condition> See 4.2, Norm Capacitance, for measuring frequency, voltage and temperature.<criteria>Refer to Table 1</criteria></condition>								
4.5	Terminal strength	seconds. Bending St Fixed the ca 90° within seconds. Diamet	ength c capacito apacito 2~3 sec ter of le mm and	or, appl of Term r, applie conds, a ead wire	ied force nd force nd then	to bent bent it Fensile (kg	the terr for 90° force N (f) (.51)	ninal (1 ' to its c	~4 mm original Bending (k 2.5 (from th positio	n within 2~
		< Criteri No notic		changes	shall b	e found	, no bre	akage o	or loose	ness at	the terminal

Version	01		Page	6
---------	----	--	------	---

ELECTROLYTIC CAPACITOR SPECIFICATION RT SERIES

		<conc< th=""><th>dition></th><th>T ··</th><th>-</th><th></th><th>0</th><th></th><th></th><th>π.</th><th></th><th></th></conc<>	dition>	T ··	-		0			π.		
		_	STEP	Testing		perature(Time		
		-	1		20±					h therma		
			2	-	-40(-25					h therma	*	
		Ļ	3		20±					h therma	-	
			4		105 -					h therma		
			5		20±	=2	r	Time	e to reac	h therma	l equilib	rium
4.6	Temperature characteristi cs	more b. In more c. At	$n\delta$ shall t than 8 tin step 5, ta than the s -25°C, in	nes of its an δ shal specified npedanc	s specif ll be wi d value.	fied value thin the	e. limit c	of Ite	em 4.4T	he leakag	ge curren	it shall no
			ing Volta	nge	160	200	250)	350	400	450	500
			$\frac{(V)}{5^{\circ}C/Z+20^{\circ}}$	Ŷ	3	3	3	_	5	5	6	6
			pacitance		-	-	-		-	-		-
		Capacit	tance tan	ηδ, and	imped		-			00µ F fo: 20Hz	r Z-40℃	²/Z+20℃
		<cone Accore</cone 	dition> ding to IE	EC60384	4-4No.4	4.13 meth	iods, T	The c	capacitor	r is stored		-
4.7	Load life test	<cone Accore 105 ℃ DC ar produc result <crit< td=""><td>dition> ding to IE ± 2 with ad ripple ct should should m</td><td>EC60384 n DC bia peak vo be testeo leet the f</td><td>4-4No.4 ns voltag oltage d after followin</td><td>4.13 meth ge plus th shall not 16 hours ng table: he follov</td><td>ods, T e rateo excee recove</td><td>The c d ripp ed th ering</td><td>capacitor ple curre ne rated time at</td><td>r is stored ent for Ta working atmosphe</td><td>able 1. (voltage</td><td>The sum) Then t</td></crit<></cone 	dition> ding to IE ± 2 with ad ripple ct should should m	EC60384 n DC bia peak vo be testeo leet the f	4-4No.4 ns voltag oltage d after followin	4.13 meth ge plus th shall not 16 hours ng table: he follov	ods, T e rateo excee recove	The c d ripp ed th ering	capacitor ple curre ne rated time at	r is stored ent for Ta working atmosphe	able 1. (voltage	The sum) Then t
4.7	life	<cone Accore 105 ℃ DC ar produc result <crit< td=""><td>dition> ding to IE ± 2 with and ripple ct should m should m eria> haracteris</td><td>EC60384 n DC bia peak vo be tested eet the f stic shall</td><td>4-4No.4 as voltage oltage d after followin <u>1 meet t</u></td><td>4.13 meth ge plus th shall not 16 hours ng table: he follov Value</td><td>ods, T e rated excee recove <u>ving re</u> in 4.3</td><td>The c d rip ed th ering equir shal</td><td>capacitor ple curre ne rated time at rements.</td><td>r is stored ent for Ta working atmosphe sfied</td><td>able 1. (voltage</td><td>The sum) Then t</td></crit<></cone 	dition> ding to IE ± 2 with and ripple ct should m should m eria> haracteris	EC60384 n DC bia peak vo be tested eet the f stic shall	4-4No.4 as voltage oltage d after followin <u>1 meet t</u>	4.13 meth ge plus th shall not 16 hours ng table: he follov Value	ods, T e rated excee recove <u>ving re</u> in 4.3	The c d rip ed th ering equir shal	capacitor ple curre ne rated time at rements.	r is stored ent for Ta working atmosphe sfied	able 1. (voltage	The sum) Then t
4.7	life	<cone Accore 105 ℃ DC ar produc result <crit< td=""><td>dition> ding to IE ± 2 with ad ripple ct should should m eria> haracteris Leakage</td><td>EC60384 n DC bia peak vo be tested eet the f stic shall</td><td>4-4No.4 as voltage oltage d after followin <u>1 meet t</u></td><td>4.13 meth ge plus th shall not 16 hours ng table: he follow Value Withir</td><td>hods, T e rated exceed recover $\frac{1}{100}$ recover $\frac{1}{100}$ re</td><td>The c d ripped th ering equir shal % of</td><td>capacitor ple curre the rated time at rements. 1 be sati f initial</td><td>r is stored ent for Ta working atmosphe sfied</td><td>able 1. (voltage eric conc</td><td>The sum) Then t litions. T</td></crit<></cone 	dition> ding to IE ± 2 with ad ripple ct should should m eria> haracteris Leakage	EC60384 n DC bia peak vo be tested eet the f stic shall	4-4No.4 as voltage oltage d after followin <u>1 meet t</u>	4.13 meth ge plus th shall not 16 hours ng table: he follow Value Withir	hods, T e rated exceed recover $\frac{1}{100}$ recover $\frac{1}{100}$ re	The c d ripped th ering equir shal % of	capacitor ple curre the rated time at rements. 1 be sati f initial	r is stored ent for Ta working atmosphe sfied	able 1. (voltage eric conc	The sum) Then t litions. T
4.7	life	<cone Accore 105 ℃ DC ar produc result <crit< td=""><td>dition> ding to IE ± 2 with nd ripple ct should m eria> haracteris Leakage Capacita</td><td>EC60384 n DC bia peak vo be testec eet the f stic shall current nnce Cha</td><td>4-4No.4 as voltage oltage d after followin <u>1 meet t</u></td><td>4.13 meth ge plus th shall not 16 hours ng table: he follow Value Withir Not m</td><td>hods, T e rated exceed recover ving re- in 4.3 $a \pm 20$ pore that</td><td>The c d ripp ed th ering equir shal % of an 20</td><td>capacitor ple curre time rated time at rements. l be sati f initial</td><td>r is stored ent for Ta working atmosphe sfied value.</td><td>able 1. (voltage eric conc ïed valu</td><td>The sum) Then t litions. T</td></crit<></cone 	dition> ding to IE ± 2 with nd ripple ct should m eria> haracteris Leakage Capacita	EC60384 n DC bia peak vo be testec eet the f stic shall current nnce Cha	4-4No.4 as voltage oltage d after followin <u>1 meet t</u>	4.13 meth ge plus th shall not 16 hours ng table: he follow Value Withir Not m	hods, T e rated exceed recover ving re- in 4.3 $a \pm 20$ pore that	The c d ripp ed th ering equir shal % of an 20	capacitor ple curre time rated time at rements. l be sati f initial	r is stored ent for Ta working atmosphe sfied value.	able 1. (voltage eric conc ïed valu	The sum) Then t litions. T

Version	01		Page	7
---------	----	--	------	---

		<criteria></criteria>	
			meet the following requirements. Value in 4.3 shall be satisfied
	Shelf	Leakage current	Within $\pm 20\%$ of initial value.
4.8	life	Capacitance Change	
	test	tanδ	Not more than 200% of the specified value.
		Appearance	There shall be no leakage of electrolyte.
		-	e stored more than 1 year, the leakage current may
			ge through about 1 k Ω resistor, if necessary.
4.9	Surge test	The capacitor shall be submit followed discharge of 5 min The test temperature shall I C_R :Nominal Capacitance (<criteria></criteria> Leakage current Capacitance Change tan δ Appearance Attention:	 be 15~35°C. μ F) Not more than the specified value. Within ±15% of initial value. Not more than the specified value. There shall be no leakage of electrolyte.
4.10	Vibration test	perpendicular directions. Vibration frequency ra Peak to peak amplitud Sweep rate Mounting method: The capacitor with diameter in place with a bracket. 4mm or les Criteria>	e : 1.5mm : 10Hz ~ 55Hz ~ 10Hz in about 1 minute greater than 12.5mm or longer than 25mm must be fixed Within 30°

Varian	01		0
Version	01	Page	0

ELECTROLYTIC CAPACITOR SPECIFICATION RT SERIES

		~			1		
		<condition></condition>					
		The capacitor shall be test	-	conditions:			
		Soldering temperature	: 245±3°C				
4.11 Solderability test	Dipping depth	: 2mm					
	Dipping speed	: 25±2.5mm	u/s				
	Dipping time	: 3±0.5s					
		<criteria></criteria>					
		Coating quality		n of 95% of the surface	e being		
		county foundy	immersed				
		<condition></condition>					
			: 				
			itor shall be immersed i				
		260 ± 5 °C for 10 ± 1 sec	onds or $400\pm10^{\circ}$ C for 3	$^{+1}_{-0}$ seconds to 1.5~2.0r	nm from the		
		body of capacitor.					
	Resistance to		ll be left under the norn	nal temperature and no	rmal		
4.12	solder heat	humidity for 1~2 hour	s before measurement.				
	test	< <u>Criteria></u>					
		Leakage current	Not more than the				
		Capacitance Change	Within $\pm 10\%$ of	initial value.			
		tanδ	Not more than the	•			
		Appearance	There shall be no l	eakage of electrolyte.			
-							
		<condition></condition>	ding to IEC60294 4No	1.7 matheda compaitor	aball ba		
		Temperature Cycle:Accor			shall be		
		placed in an oven, the cor					
			mperature	Time			
		(1)+20°C		≤ 3 Minutes			
	Change of	(2)Rated low tempera	ature (-40°C) (-25°C)	30 ± 2 Minutes			
4.13	temperature	(3)Rated high temper	rature $(+105^{\circ}C)$	30 ± 2 Minutes			
	test						
		(1) to (3)=1 cycle, to	al 5 cycle				
		<criteria></criteria>		4			
		The characteristic shall m			л I		
		Leakage current	Not more than the s	-	-		
		tanð	Not more than the s	*	-		
		Appearance	There shall be no le	eakage of electrolyte.			
		<condition></condition>					
		Humidity Test:					
		According to IEC60384	-				
		be exposed for 500 ± 8 hours in an atmosphere of $90\sim95\%$ R H .at					
		40 ± 2 °C, the characteristic change shall meet the following requirement.					
4.14	Damp heat	<criteria></criteria>					
7.14	test	Leakage current	Not more than the spe	cified value.]		
		Capacitance Change	Within $\pm 20\%$ of init		1		
		tanδ	Not more than 120% of		1		
			There shall be no leak	-			
		Appearance		age of electrolyte.	J		

Version	01	Page	9

ELECTROLYTIC CAPACITOR SPECIFICATION RT SERIES

4.15	Vent test	<condition> The following test only apply to those products with vent products at diameter $\geq \emptyset 6.3$ with vent. D.C. test The capacitor is connected with its polarity reversed to a DC power source. Then a current selected from below table is applied. <table 3=""> Diameter (mm) DC Current (A) 22.4 or less 1 Over 22.4 10 Criteria> The vent shall operate with no dangerous conditions such as flames or dispersion of pieces of the capacitor and/or case.</table></condition>
4.16	Maximum permissible (ripple current)	Condition> The maximum permissible ripple current is the maximum A.C current at 120Hz and can be applied at maximum operating temperature Table-1 The combined value of D.C voltage and the peak A.C voltage shall not exceed the rated voltage and shall not reverse voltage. Frequency Multipliers: <u>Coefficient</u> <u>Hrz</u> <u>120</u> <u>1k</u> <u>10k</u> <u>100k</u> <u>1-5.6</u> <u>0.20</u> <u>0.40</u> <u>0.80</u> <u>1.00</u> <u>1.00</u> <u>20-</u> <u>0.50</u> <u>0.85</u> <u>0.94</u> <u>1.00</u>

Version 01 Page 10	Version	01			10
--------------------	---------	----	--	--	----

5. It refers to the latest document of "Environment-related Substances standard" (WI-HSPM-QA-072).

	Substances				
	Cadmium and cadmium compounds				
Heavy metals	Lead and lead compounds				
Treavy metals	Mercury and mercury compounds				
	Hexavalent chromium compounds				
	Polychlorinated biphenyls (PCB)				
Chloinated	Polychlorinated naphthalenes (PCN)				
organic	Polychlorinated terphenyls (PCT)				
compounds	Short-chain chlorinated paraffins(SCCP)				
	Other chlorinated organic compounds				
	Polybrominated biphenyls (PBB)				
Brominated .	Polybrominated diphenylethers(PBDE) (including				
organic	decabromodiphenyl ether[DecaBDE])				
compounds	Other brominated organic compounds				
Tributyltin comp	bounds(TBT)				
Triphenyltin con	npounds(TPT)				
Asbestos					
Specific azo con	npounds				
Formaldehyde					
Beryllium oxide					
Beryllium copp	ber				
Specific phthalat	tes (DEHP,DBP,BBP,DINP,DIDP,DNOP,DNHP)				
Hydrofluorocarb	oon (HFC), Perfluorocarbon (PFC)				
Perfluorooctane	sulfonates (PFOS)				
Specific Benzotr	iazole				

Version	01		Page	11
---------	----	--	------	----

SAMXON

Attachment: Application Guidelines

1.Circuit Design

- 1.1 Operating Temperature and Frequency Electrolytic capacitor electrical parameters are normally specified at 20°C temperature and 120Hz frequency. These parameters vary with changes in temperature and frequency. Circuit designers should take these changes into consideration.
- (1) Effects of operating temperature on electrical parameters

 At higher temperatures, leakage current and capacitance increase while equivalent series resistance (ESR) decreases.
 - b) At lower temperatures, leakage current and capacitance decrease while equivalent series resistance (ESR) increases.
- (2) Effects of frequency on electrical parameters
 - a) At higher frequencies capacitance and impedance decrease while $\tan \delta$ increases.
 - b) At lower frequencies, ripple current generated heat will rise due to an increase in equivalent series resistance (ESR).
- 1.2 Operating Temperature and Life Expectancy See the file: Life calculation of aluminum electrolytic capacitor
- 1.3 Common Application Conditions to Avoid

The following misapplication load conditions will cause rapid deterioration to capacitor electrical parameters. In addition, rapid heating and gas generation within the capacitor can occur causing the pressure relief vent to operate and resultant leakage of electrolyte. Under Leaking electrolyte is combustible and electrically conductive.

(1) Reverse Voltage

DC capacitors have polarity. Verify correct polarity before insertion. For circuits with changing or uncertain polarity, use DC bipolar capacitors. DC bipolar capacitors are not suitable for use in AC circuits.

(2) Charge / Discharge Applications

Standard capacitors are not suitable for use in repeating charge / discharge applications. For charge / discharge applications consult us and advise actual conditions.

(3) Over voltage

Do not apply voltages exceeding the maximum specified rated voltage. Voltages up to the surge voltage rating are acceptable for short periods of time. Ensure that the sum of the DC voltage and the superimposed AC ripple voltage does not exceed the rated voltage.

(4) Ripple Current

Do not apply ripple currents exceeding the maximum specified value. For high ripple current applications, use a capacitor designed for high ripple currents or contact us with your requirements. Ensure that allowable ripple currents superimposed on low DC bias voltages do not cause reverse voltage conditions.

- 1.4 Using Two or More Capacitors in Series or Parallel
- (1) Capacitors Connected in Parallel

The circuit resistance can closely approximate the series resistance of the capacitor causing an imbalance of ripple current loads within the capacitors. Careful design of wiring methods can minimize the possibility of excessive ripple currents applied to a capacitor.

(2) Capacitors Connected in Series

Normal DC leakage current differences among capacitors can cause voltage imbalances. The use of voltage divider shunt resistors with consideration to leakage current can prevent capacitor voltage imbalances.

- 1.5 Capacitor Mounting Considerations
- (1) Double Sided Circuit Boards

Avoid wiring pattern runs, which pass between the mounted capacitor and the circuit board.

When dipping into a solder bath, excess solder may collect under the capacitor by capillary action and short circuit the anode and cathode terminals.

(2)Circuit Board Hole Positioning

The vinyl sleeve of the capacitor can be damaged if solder passes through a lead hole for subsequently processed parts. Special care when locating hole positions in proximity to capacitors is recommended.

(3)Circuit Board Hole Spacing

The circuit board holes spacing should match the capacitor lead wire spacing within the specified tolerances. Incorrect spacing can cause excessive lead wire stress during the insertion process. This may result in premature capacitor failure due to short or open circuit, increased leakage current, or electrolyte leakage.

(4) Clearance for Case Mounted Pressure Relief vents

Capacitors with case mounted pressure relief vents require sufficient clearance to allow for proper vent operation. The minimum clearances are dependent on capacitor diameters as proper vent operation. The minimum clearances are dependent on capacitor diameters as follows.

φ6.3~φ16mm:2mm minimum, φ18~φ35mm:3mm minimum, φ40mm or greater:5mm minimum.

(5) Clearance for Seal Mounted Pressure Relief Vents

A hole in the circuit board directly under the seal vent location is required to allow proper release of pressure.

Version	01		Page	12
---------	----	--	------	----

RT SERIES
 (6) Wiring Near the Pressure Relief Vent Avoid locating high voltage or high current wiring or circuit board paths above the pressure relief vent. Flammable, high temperature gas exceeding 100°C may be released which could dissolve the wire insulation and ignite. (7) Circuit Board patterns Under the Capacitor Avoid circuit board runs under the capacitor as electrolyte leakage could cause an electrical short. (8) Screw Terminal Capacitor Mounting Do not orient the capacitor with the screw terminal side of the capacitor facing downwards. Tighten the terminal and mounting bracket screws within the torque range specified in the specification.
 Electrical Isolation of the Capacitor Completely isolate the capacitor as follows. Between the cathode and the case (except for axially leaded B types) and between the anode terminal and other circuit paths Between the extra mounting terminals (on T types) and the anode terminal, cathode terminal, and other circuit paths.
1.7 The Product endurance should take the sample as the standard.
1.8 If conduct the load or shelf life test, must be collect date code within 6 months products of sampling.
 1.9 Capacitor Sleeve The vinyl sleeve or laminate coating is intended for marking and identification purposes and is not meant to electrically insulate the capacitor. The sleeve may split or crack if immersed into solvents such as toluene or xylene, and then exposed to high temperatures.
CAUTION! Always consider safety when designing equipment and circuits. Plan for worst case failure modes such as short circuits and open circuits which could occur during use. (1) Provide protection circuits and protection devices to allow safe failure modes. (2) Design redundant or secondary circuits where possible to assure continued operation in case of main circuit failure.
 2.Capacitor Handling Techniques 2.1 Considerations Before Using (1) Capacitors have a finite life. Do not reuse or recycle capacitors from used equipment. (2) Transient recovery voltage may be generated in the capacitor due to dielectric absorption. If required, this voltage can be discharged with a resistor with a value of about 1kΩ. (3) Capacitors stored for long periods of time may exhibit an increase in leakage current. This can be corrected by gradually applying rated voltage in series with a resistor of approximately 1kΩ. (4) If capacitors are dropped, they can be damaged mechanically or electrically. Avoid using dropped capacitors. (5) Dented or crushed capacitors should not be used. The seal integrity can be compromised and loss of electrolyte / shortened life can result.
 2.2 Capacitor Insertion Verify the correct capacitance and rated voltage of the capacitor. Verify the correct polarity of the capacitor before inserting. Verify the correct hole spacing before insertion (land pattern size on chip type) to avoid stress on the terminals. Ensure that the auto insertion equipment lead clinching operation does not stress the capacitor leads where they enter the seal of the capacitor. For chip type capacitors, excessive mounting pressure can cause high leakage current, short circuit, or disconnection.
 2.3 Manual Soldering (1) Observe temperature and time soldering specifications or do not exceed temperatures of 400 °C for 3 seconds or less. (2) If lead wires must be formed to meet terminal board hole spacing, avoid stress on the lead wire where it enters the capacitor seal. (3) If a soldered capacitor must be removed and reinserted, avoid excessive stress to the capacitor leads. (4) Avoid touching the tip of the soldering iron to the capacitor, to prevent melting of the vinyl sleeve.

- 2.4 Flow Soldering
- (1) Do not immerse the capacitor body into the solder bath as excessive internal pressure could result.
- (2) Observe proper soldering conditions (temperature, time, etc.) Do not exceed the specified limits.
- (3) Do not allow other parts or components to touch the capacitor during soldering.
- 2.5 Other Soldering Considerations

Rapid temperature rises during the preheat operation and resin bonding operation can cause cracking of the capacitor vinyl sleeve. For heat curing, do not exceed 150°C for a maximum time of 2 minutes.

Version	01		Page	13
---------	----	--	------	----

2.6 Capacitor Handling after Solder

- (1). Avoid movement of the capacitor after soldering to prevent excessive stress on the lead wires where they enter the seal.
- (2). Do not use capacitor as a handle when moving the circuit board assembly.
- (3). Avoid striking the capacitor after assembly to prevent failure due to excessive shock.
- 2.7 Circuit Board Cleaning

Acetone

- (1) Circuit boards can be immersed or ultrasonically cleaned using suitable cleaning solvents for up 5 minutes and up to 60°C maximum temperatures. The boards should be thoroughly rinsed and dried. The use of ozone depleting cleaning agents is not recommended in the interest of protecting the environment.
- (2) Avoid using the following solvent groups unless specifically allowed for in the specification;

Halogenated cleaning solvents: except for solvent resistant capacitor types, halogenated solvents can permeate the seal and cause internal capacitor corrosion and failure. For solvent resistant capacitors, carefully follow the temperature and time requirements of the specification. 1-1-1 trichloroethane should never be used on any aluminum electrolytic capacitor.

- Alkali solvents : could attack and dissolve the aluminum case.
- Petroleum based solvents: deterioration of the rubber seal could result.
- Xylene : deterioration of the rubber seal could result.
 - : removal of the ink markings on the vinyl sleeve could result.
- (3) A thorough drying after cleaning is required to remove residual cleaning solvents which may be trapped between the capacitor and the circuit board. Avoid drying temperatures, which exceed the maximum rated temperature of the capacitor.
- (4) Monitor the contamination levels of the cleaning solvents during use by electrical conductivity, pH, specific gravity, or water content. Chlorine levels can rise with contamination and adversely affect the performance of the capacitor. Please consult us for additional information about acceptable cleaning solvents or cleaning methods.

2.8 Mounting Adhesives and Coating Agents

When using mounting adhesives or coating agents to control humidity, avoid using materials containing halogenated solvents. Also, avoid the use of chloroprene based polymers. After applying adhesives or coatings, dry thoroughly to prevent residual solvents from being trapped between the capacitor and the circuit board.

3. Precautions for using capacitors

3.1 Environmental Conditions

- Capacitors should not be stored or used in the following environments.
- (1) Temperature exposure above the maximum rated or below the minimum rated temperature of the capacitor.
- (2) Direct contact with water, salt water, or oil.
- (3) High humidity conditions where water could condense on the capacitor.
- (4) Exposure to toxic gases such as hydrogen sulfide, sulfuric acid, nitric acid chlorine, or ammonia.
- (5) Exposure to ozone, radiation, or ultraviolet rays.
- (6) Vibration and shock conditions exceeding specified requirements.

3.2 Electrical Precautions

- (1) Avoid touching the terminals of the capacitor as possible electric shock could result. The exposed aluminum case is not insulated and could also cause electric shock if touched.
- (2) Avoid short circuit the area between the capacitor terminals with conductive materials including liquids such as acids or alkaline solutions.

4. Emergency Procedures

- (1) If the pressure relief vent of the capacitor operates, immediately turn off the equipment and disconnect form the power source. This will minimize additional damage caused by the vaporizing electrolyte.
- (2) Avoid contact with the escaping electrolyte gas which can exceed 100°C temperatures.

If electrolyte or gas enters the eye, immediately flush the eyes with large amounts of water.

If electrolyte or gas is ingested by month, gargle with water.

If electrolyte contacts the skin, wash with soap and water.

5. Long Term Storage

Leakage current of a capacitor increases with long storage times. The aluminum oxide film deteriorates as a function of temperature and time. If used without reconditioning, an abnormally high current will be required to restore the oxide film. This current surge could cause the circuit or the capacitor to fail. After one year, a capacitor should be reconditioned by applying rated voltage in series with a 1000Ω , current limiting resistor for a time period of 30 minutes. If the expired date of products date code is over eighteen months, the products should be return to confirmation.

5.1 Environmental Conditions

	Version	01		Page	14
--	---------	----	--	------	----

The capacitor shall be not use in the following condition:

(1) Temperature exposure above the maximum rated or below the minimum rated temperature of the capacitor.

(2) Direct contact with water, salt water, or oil.

(3) High humidity conditions where water could condense on the capacitor.

(4) Exposure to toxic gases such as hydrogen sulfide, sulfuric acid, nitric acid, chlorine, or ammonia.

(5) Exposure to ozone, radiation, or ultraviolet rays.

(6) Vibration and shock conditions exceeding specified requirements.

6. Capacitor Disposal

When disposing of capacitors, use one of the following methods.

Incinerate after crushing the capacitor or puncturing the can wall (to prevent explosion due to internal pressure rise). Capacitors should be incinerated at high temperatures to prevent the release of toxic gases such as chlorine from the

polyvinyl chloride sleeve, etc.

Dispose of as solid waste.

NOTE: Local laws may have specific disposal requirements, which must be followed.

Remark:5G outdoor power system is not applicable

Version	01		Page	15
---------	----	--	------	----